Abstract
Fretting fatigue commonly appears at mechanically fastened joints, and it will dramatically decrease the fatigue life of a structure. Thus, the improvement of the prediction accuracy of fretting fatigue behavior is necessary. Furthermore, defects, e.g. particles and micro-voids, always affect the macroscopic material properties and the fatigue life. In this paper, the authors consider the heterogeneity of material in fretting fatigue numerical simulations, using a combination between Multiscale Homogenization and Direct Numerical Simulation (MH-DNS). The Damage Parameter (DP) is calculated using critical plane method and averaging method in order to get a good prediction of fretting fatigue life. Moreover, the maximum value of DP may be changed from the contact surface to the edge of the micro-void through this study using three different models. The three models are: 1) homogeneous model, 2) heterogeneous model using multi-scale homogenization, and 3) heterogeneous model using a hybrid MH-DNS. The MH-DNS model shows the best-predicted results among all other models using CP method and extend averaging method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.