Abstract

Morphological filtering has been extensively applied to rotating machinery diagnostics, whereas traditional morphological operators cannot effectively extract fault-triggered transient impulse components from noisy mechanical vibration signal. In this paper, a framework of generalized compound morphological operator (GCMO) is presented to enhance the extraction ability of impulsive fault features. Further, several new compound morphological operators are developed for transient impulse extraction by introducing the product, convolution, and cross-correlation operations into the GCMO framework. In addition, a novel strategy for selecting the structural element length is proposed to optimize the repetitive impulse feature extraction of the compound morphological operators. The fault feature extraction performance of the developed compound morphological operators is investigated and validated on the simulation signals and measured railway bearing vibration signals, and compared with the combined morphological operators and five existing feature extraction methods. The results demonstrate that the morphological cross-correlation operators are more efficient in repetitive fault impulse feature extraction and bearing fault diagnosis than the combined morphological operators and the comparison methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.