Abstract
Cement augmentation following benign bone tumor surgery, i.e. curettage and cementation, is recommended in patients at high risk of fracture. Nonetheless, identifying appropriate cases and devices for augmentation remains debatable. Our goal was to develop a validated biomechanical tool to: predict the post-surgery strength of a femoral bone, assess the precision and accuracy of the predicted strength, and discover the mechanisms of reconstruction failure, with the aim of finding a safe biomechanical fixation. Tumor surgery was mimicked in quantitative-CT (QCT) scanned cadaveric human distal femora, and subsequently tested in compression to measure bone strength (FExp). Finite element (FE) models considering bone material non-homogeneity and non-linearity were constructed to predict bone strength (FFE). Analyses of contact, damage, and crack initiation at the bone-cement interface (BCI) were completed to investigate critical failure locations. Results of paired t-tests did not show a significant difference between FExp and FFE (P > 0.05); linear regression analysis resulted in good correlation between FExp and FFE (R2 = 0.94). Evaluation of the models precision using linear regression analysis yielded R2 = 0.89, with the slope = 1.08 and intercept = −324.16 N. FE analyses showed the initiation of damage and crack and a larger cement debonding area at the proximal end and most interior part of BCI, respectively. Therefore, we speculated that devices that reinforce critical failure locations offer the most biomechanical advantage. The QCT-based FE method proved to be a reliable tool to predict distal femoral strength, identify some causes of reconstruction failure, and assist in a safer selection of fixation devices to reduce post-operative fracture risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.