Abstract

Die shift issues that arise in embedded wafer-level packaging because of the mold flow process is investigated in this paper, along with solution strategies to address them. The nonlinearity trend of the die shift in the experimental inspection is explained and captured by the numerical simulation with a consideration of the coefficient of thermal expansion effect coupled with the mold flow effect. Optimizing the initial diameter of molding compounds, increasing the thickness of molding compounds, and reducing the filling speed are the three solutions we demonstrate for reducing the drag force. Die shift generated by the mold flow could be reduced by optimizing these controllable parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.