Abstract

Understanding the permeability characteristics of coal under mining disturbance is crucial for ensuring coal mine safety and efficient gas extraction. Coal is a dual porosity medium consisting of matrix and fracture, and there are some differences in mechanics and permeability between matrix pores and fracture. However, research on the damage and gas seepage characteristics of dual-porosity coal is limited. In this paper, a coupled damage-permeability model considering matrix pores and fractures in coal is established, incorporating the influences of effective stress, gas adsorption, thermal expansion, and thermal cracking. And the reliability of the newly developed model was verified using experimental data of temperature and pressure variations under different stress boundary conditions. The results indicate that during the elastic stage, the total permeability and fracture permeability of coal exhibit a trend of decreasing and then increasing with pore pressure, while matrix permeability gradually increases. In the full stress-strain stage, the overall damage-permeability and fracture damage-permeability of coal exhibit an “S"-shaped variation trend with axial strain, while matrix damage-permeability shows a slow increasing trend. To accurately characterize the evolution of gas seepage in coal, contributions from matrix pores and fractures must be comprehensively considered, and the effects of gas adsorption, effective stress, thermal cracking, and thermal expansion on permeability cannot be ignored. Furthermore, through parameter sensitivity analysis, it is found that during the elastic stage, coal permeability decreases with an increase in the adsorption sensitivity coefficient and thermal expansion coefficient. In the full stress-strain process, coal permeability increases with an increase in the damage-permeability coefficient. The results of this study are of great significance for predicting the evolution of coal permeability in the working face ahead under mining disturbance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call