Abstract

Limited depth of focus (DOF) is one main shortage in traditional optical microscopy systems that severely affect simultaneous visualization of objects at different depths in the same field of view. In this paper, we propose a novel method to enhance the DOF in digital holography that consists of applying a numerical axicon transformation to the hologram during the reconstruction process. The idea behind this is to exploit the well-known ability of an axicon lens to create long and narrow focal lines along the optical axis. By this approach, we demonstrate that it is possible to obtain an extended focused image in which objects located at different depths are simultaneously visualized in good focus. First, the proposed method is tested in a case study of three different wires, positioned on different planes and recorded in lensless configuration. A comparison with a common DOF extension approach based on cubic phase function is performed. Finally, experiments of motile cells, flowing in a microfluidic channel and at different depths, are investigated for demonstrating the effectiveness of the proposed approach in bio-microfluidics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.