Abstract

Drag reduction in wall-bounded flows can be achieved by the passive flow control technique through the application of bio-inspired ribleted surfaces. In this paper, innovative design and manufacturing of serrate-semi-circular ribleted surfaces are presented with application to friction and drag reduction on engineering surfaces. Firstly, the design of the ribleted surfaces is described particularly focusing on the serrate-semi-circular shaped structures. Secondly, machining of ribleted surfaces by fly-cutting is investigated, covering the utilization of bespoke CVD diamond tools on a micro-milling machine and the corresponding micro fly-cutting processes. Metrology measurement results show good agreement achieved between the designed and machined surface features. Experiment conducted in wind tunnel shows the machined surface can produce 7% in drag reduction. Compared with conventional micro milling, the micro fly-cutting technique resulted from this research illustrates the unique advantage and industrial significance, particularly for manufacturing micro-structured surfaces in an industrial scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call