Abstract
A new deformable geometry class for the VMC++ Monte Carlo code was implemented based on the voxel warping method. Alternative geometries which use tetrahedral sub-elements were implemented and efficiency improvements investigated. A new energy mapping method, based on calculating the volume overlap between deformed reference dose grid and the target dose grid, was also developed. Dose calculations using both the voxel warping and energy mapping methods were compared in simple phantoms as well as a patient geometry. The new deformed geometry implementation in VMC++ increased calculation times by approximately a factor of 6 compared to standard VMC++ calculations in rectilinear geometries. However, the tetrahedron-based geometries were found to improve computational efficiency, relative to the dodecahedron-based geometry, by a factor of 2. When an exact transformation between the reference and target geometries was provided, the voxel and energy warping methods produced identical results. However, when the transformation is not exact, there were discrepancies in the energy deposited on the target geometry which lead to significant differences in the dose calculated by the two methods. Preliminary investigations indicate that these energy differences may correlate with registration errors; however, further work is needed to determine the usefulness of this metric for quantifying registration accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.