Abstract
Photodynamics of 2-hydroxybenzylideneaniline (photochromic salicylidene aniline SAOH) and N-(2-methoxybenzylidene)aniline (SAOMe) are studied by steady state and transient optical spectroscopy in solution and gas phase at different excitation wavelengths (266, 355 and 390 nm). Two competitive processes are observed from the enol* excited state: on one hand a rotation to get a twisted-enol, and on the other hand an excited state intramolecular proton transfer (ESIPT) followed by a cis-trans isomerisation to get the trans-keto photochromic product. For the first time both processes are characterized at an ultrashort time scale for salicylidene aniline. Resolution of the spectrokinetic data is achieved by multivariate curve resolution and attribution of the intermediate species recovered is performed in comparison with the results obtained for SAOMe, which can only undergo enol rotational isomerisation. It shows that ESIPT and rotation to the twisted-enol for SAOH occur within 100 fs, as predicted by recent quantum dynamical simulations, with an efficiency ratio dependent on the excitation wavelength. Therefore a general photoinduced mechanism for salicylidene aniline is drawn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.