Abstract
Excited-state intramolecular proton transfer (ESIPT) in salicylideneaniline (SA) and selected derivatives substituted in the para position of the anilino group have been investigated by femtosecond time-resolved photoelectron spectroscopy (TRPES) and time-dependent density functional theory (TDDFT). SA has a twisted structure at the energetic minimum of the ground state, but ESIPT is assumed to take place through a planar structure, although this has not been fully established. The TRPES studies revealed that the excited-state dynamics within the S1 band varied significantly with excitation wavelength. At finite temperatures, the ground state was found to sample a broad range of torsional angles, from planar to twisted. At lower photon energies (370 nm), only the planar ground-state molecules were excited, and the excited-state reaction took place within 50 fs. At higher energies (350 and 330 nm), predominantly twisted ground-state molecules were excited: they had to planarize before ESIPT could occur. This process was found to be slower in methylated SA but did not change significantly in the brominated and nitrated SAs. These substitution effects on the decay dynamics can be explained by modifications of the potential barriers, as predicted by the TDDFT calculations, and support the mechanism of a twisting motion of the anilino ring prior to ESIPT. The contribution of another pathway leading to internal conversion within the enol form was found to be minor at the excitation wavelengths considered here.
Highlights
Proton transfer is a fundamental and important chemical reaction in biological systems
Excited state intramolecular proton transfer (ESIPT) in salicylideneaniline (SA) and selected derivatives substituted in para-position of the anilino group has been investigated by femtosecond time-resolved photoelectron spectroscopy (TRPES) and time-dependent density functional theory (TDDFT)
We found a drastic dependence of the photo-induced dynamics of SA on the excitation energies
Summary
Proton transfer is a fundamental and important chemical reaction in biological systems. Excited state intramolecular proton transfer (ESIPT) in salicylideneaniline (SA) and selected derivatives substituted in para-position of the anilino group has been investigated by femtosecond time-resolved photoelectron spectroscopy (TRPES) and time-dependent density functional theory (TDDFT). We study the excited state proton transfer (ESIPT) reaction in salicylideneaniline (SA). The basic understanding of the mechanism is as follows: In the ground state, the enol form is more stable than the keto form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.