Abstract

In this investigation, numerical modeling for the behavior of nanomaterial inside a porous zone with imposing Lorentz force has been illustrated. The working fluid is a mixture of H2O and CuO and due to concentration of 0.04, it is reasonable to use the homogeneous model. Two-temperature model for porous zone was employed in which new scalar for calculating temperature of solid region was defined. CVFEM has been applied to model this complex physics. Radiation terms were considered and their influence on Nu has also been considered. Verification with benchmark proves greater accuracy. Dispersing nanopowders helps the fluid to increase velocity and reduce the temperature of inner wall. Rise of Ra results in three strong eddies inside the zone which creates two thermal plumes and it reduces the temperature of square surface about 68%. With rise of Nhs, the power of counter-clockwise vortex reduces about 61.6% and inner wall becomes warmer about 33.3%. Raising the Ha makes thermal plume to vanish and cooling rate decreases about 46.6%. Augment of Nhs makes Nu to reduce about 5.08% while augment of Ra makes it to augment about 35.64%. Also, augmenting Ha makes Nu to decline about 56.45%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.