Abstract
Flow field-flow fractionation (Fl-FFF) for silica nanoparticles with offline inductively coupled plasma mass spectrometry (ICP-MS) was applied to investigate the adsorption behavior of tin onto silica nanoparticles. Effect of carrier solutions and membranes was studied to achieve better separation for silica nanoparticles prior to tin detection using ICP-MS. Investigation was carried out by using 0.25 mM ammonium carbonate and 0.02% FL-70 with 0.02% NaN3 as carrier solutions with 1 kDa regenerated cellulose (RC), 10 kDa regenerated cellulose (RC), and 10 kDa polyethersulfone (PES) membranes. Ammonium carbonate carrier solution with suitable ionic strength provided good separation with minimization of particle-membrane interaction. Better retention was shown by employing 10 kDa RC membrane. Furthermore, Fl-FFF was employed for the separation of silica nanoparticles incubated with tin. Fractions eluted from Fl-FFF were collected and then introduced into ICP-MS. Tin was adsorbed onto silica nanoparticles with different adsorption capabilities depending on particle size. Adsorption of tin was greater on the smaller size of silica nanoparticles compared to the bigger size with the adsorption percentage of 98.5, 44.9, and 6.5 for 60 nm, 100 nm, and 200 nm, respectively. Size-dependent adsorption of tin was in good agreement with surface area per volume of silica nanoparticles.
Highlights
Synthetic nanosilica or silica nanoparticles have been used in diverse applications
Silica nanoparticles were successfully separated by Flow field-flow fractionation (Fl-Field-flow fractionation (FFF)) with the use of two types of carrier solutions and different types of membranes
Effect of membranes and carrier solutions on the separation behavior of silica nanoparticles Effect of membranes We examined three membranes with different types as well as different molecular weight cut-off (MWCO) (1 kDa and 10 kDa) with introduction of two types of carrier solutions including 0.02% (v/v) FL-70 with 0.02% NaN3 (w/v) and 0.25 mM ammonium carbonate
Summary
Synthetic nanosilica or silica nanoparticles have been used in diverse applications. They offer great stability with easy synthesis protocol (Rao et al 2005). Synthetic silica nanoparticles are available in various forms such as powder, gel, precipitate, and colloid (Fruijtier-Polloth 2012). Addition of silica nanoparticles into dairy products provides the advantages of quality enhancement, such as to prevent caking and to act as thickening or emulsion stabilizer of some products such as coffee creamers, milk, soups, salts, sauces, and flours (Heroult et al 2014). Silica nanoparticles with particle size of 30–200 nm were found in food products with concentration range of less than 0.1 to 6.9 mg g−1 (Dekkers et al 2011).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.