Abstract
In the industry sector, it is very common to have different types of dissimilar materials on the same construction rather than products made from a single type of material. Traditional methods (welding, mechanical fastening, and adhesive bonding) and hybrid techniques (friction stir welding, weld bonding, and laser welding) are used in the assembly or joining of these materials. However, while joining similar types of materials is relatively easy, the process becomes more challenging when joining dissimilar materials due to the structure and properties of the materials involved. In recent years, additive manufacturing and 3D printing have revolutionized the manufacturing landscape and have provided great opportunities for the production of polymer-based multi-materials. However, developments in the joining of multi-material parts are limited, and their limits are not yet clear. This study focuses on the joining of 3D-printed products made from PLA-based multiple materials (PLA and PLA Wood) using friction stir welding. Single-material and multi-material parts (with 100% infill ratio and three different combinations of 50% PLA/50% PLA Wood) were welded at a feed rate of 20 mm/min and three different tool rotational speeds (1750, 2000, and 2250 rpm). Tensile and bending tests were conducted on the welded samples, and temperature measurements were taken. The fractured surfaces of the samples were examined to perform a damage analysis. It is determined that the weld strength of multi-materials changes depending on the combination of the material (material design). For multi-materials, a welding efficiency of 74.3% was achieved for tensile strength and 142.68% for bending load.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have