Abstract

A gas turbine power plant in Thailand had the problem of compressor blade fracture in Stages 6–8, which was caused by housing damage. This gas turbine has a total of 15 stages. The housing damage reduced the lifetime of blades to an unacceptable level. This article shall report the solution and outcomes. Three-dimensional (3D) compressor blade models in the problematic stages were prepared by a 3D scanning machine to find a solution based on computational fluid dynamics (CFD), and then were completed for simulation by adding Stages 5 and 9 to become a multi-stage axial model. The latter models were modified by trimming the trailing edge by 1-, 5-, and 10-mm. Using ANSYS CFX R19.2 software, the CFD results of the trailing edge modification effect on flow using the shear stress transport (SST) k-ω turbulence model revealed aerodynamics inside the problematic stages both before and after blade modifications. Modifying the blade by 5 mm was suitable, because it had lesser effects on aerodynamic parameters: pressure ratio, drag, and lift coefficients, when compared to the modification of 10 mm. The larger the modification, the greater the effect on aerodynamics. The effects on aerodynamics were intensified when they were modified by 10 mm. The validation of base line blades was conducted for the overall compressor parameters that were compared with the measurable data. These results were accepted and gave positive feedbacks from engineers who practically applied our reports in a real maintenance period of gas turbine.

Highlights

  • In the present decade, high-performance and cost reduction methods to develop modern axial compressors in a gas turbine power plant are greatly demanded

  • This article focuses on axial compressor trimming trailing edge modification and its effects on

  • Three-dimensional multi stage geometry that was created by 3D scan machine with the flow field

Read more

Summary

Introduction

High-performance and cost reduction methods to develop modern axial compressors in a gas turbine power plant are greatly demanded. The objectives of modifications are improving the compressor blade reliability under low risks with higher loading, increasing rotational speed, and extending usage duration. The partial blade-geometry modification is one of common methods that have been applied at precise maintenance schedules. The modifications become a challenge in modern compressor blade because they can cause damages and disorderly aerodynamics behavior. This unproven redesign without engineering analysis may cause high risk potentials in the failure of compressor system as well as influent to the power plant’s dependability and safety regulations. A gas turbine power plant of the Electricity Generating

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.