Abstract
The thermal conductivities (TCs) of graphene and folded graphene (FG) were calculated by non-equilibrium molecular dynamics (NEMD) simulation with the Condensed-phase Optimized Molecular Potential for Atom Simulation Studies (COMPASS) force field. The heat flux of FG model is along the direction perpendicular to the graphene sheet fragments connected by two nearest kinked regions. By extrapolation of the NEMD TC data in order to obtain the corresponding macroscopic TC values, the calculated graphene TC is about 2212W/mK, which is located within the previous simulation data. For FG, the predicted TC value is about 71.4W/mK, which is only 3.3% that of the graphene TC, indicating the TC of graphene can be effectively reduced by folding the graphene. The phonon vibrational spectrums of graphene and FG were also calculated by the Fourier transform of the velocity autocorrelation function. The spectrum ranging from 1150 to 1650cm−1 and at peaks of 620, 750, 1250, 1750cm−1 of graphene are higher than those of FG. The decrease of the amplitudes of the long-wave phonon mode is the main reason for the reduction in the TC of FG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.