Abstract

The structure of detonation waves propagating through the annular channel of an optically accessible non-premixed rotating detonation engine (RDE) are investigated using mid-infrared imaging. The RDE is operated on hydrogen–air mixtures for a range of air mass flow rates and equivalence ratios. Instantaneous images of the radiation intensity from water vapor are acquired using a mid-infrared camera and a band-pass filter (2.890 ± 0.033 µm). The instantaneous mid-infrared images reveal the stochastic nature of the detonation wave structure, position and angle of oblique and reflected shock waves, presence of shear layer separating products from the previous and current cycles, and extent of mixing between the reactants and products in the reactant fill zone in front of the detonation wave. The images show negligible signal directly in front of the detonation waves suggesting that there is minimal mixing between the reactants and products from the previous cycle ahead of the detonation wave for most operating conditions. The mid-infrared images provide insights useful for improving fundamental understanding of the detonation structure in RDEs and benchmark data for evaluating modeling and simulation results of RDEs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call