Abstract

The spatial resolution of the light-addressable potentiometric sensor (LAPS) is investigated both theoretically and experimentally. For a theoretical analysis, the diffusion equation for minority charge carriers in the semiconductor was solved. The results suggest that by thinning the semiconductor wafer, the spatial resolution of the LAPS is no longer limited by the bulk minority charge carrier diffusion length. Spatial resolution in the micrometer range should thus be possible. For an experimental analysis, the effective diffusion length of light-generated charge carriers parallel to the sensor surface was measured. The results show that by increasing the doping density and by thinning the semiconductor substrate, spatial resolution of about 15 μm is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.