Abstract

Due to adverse effects of Polycyclic Aromatic Hydrocarbons (PAHs) on human health, it is important to understand how airborne PAHs, are spatially distributed within urban areas. Moss has been shown to be a suitable material for biomonitoring of airborne PAH pollution. In this study, the moss Rhytidiadelphus squarrosus was sampled throughout Tórshavn, Faroe Islands. 53 Rhytidiadelphus squarrosus samples were extracted using a matrix solid-phase dispersive extraction method and analysed for 19 parent PAHs and six groups of alkylated PAHs using gas chromatography mass-spectrometry. All PAHs were quantified in at least one Rhytidiadelphus squarrosus sample, and the sum of the EPA 16 PAHs (ƩPAHEPA16) ranged from 0.90 to 344µgkg-1 dry weight. Higher concentrations were found close to the harbour and the main roads. The spatial correlation was investigated for the ƩPAHEPA16, pyrene, fluoranthene, chrysene, benzo(e)pyrene, benzo(g,h,i)perylene, C1-phenanthrenes/C1-anthracenes, and C2-phenanthrenes/C2-anthracenes using variograms. The effective range of the spatial correlation was between 500 to 700m of all PAHs. The evaluation of diagnostic ratios of fluoranthene to pyrene, and benzo(a)anthracene to chrysene suggest that different pollution sources affect urban areas of different types. To the best of our knowledge, this is the first time airborne PAH pollution patterns were mapped in an Arctic town, and the first time, Rhytidiadelphus squarrosus was used for tracing PAH pollution sources. Rhytidiadelphus squarrosus is suitable for biomonitoring and mapping PAH pollution within urban areas since it is widespread, and suitable for mapping PAHs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call