Abstract

Spallation phenomena in graphite targets were investigated experimentally under nano- and picosecond shock-wave action at laser facilities “Kamerton-T” (GPI RAS) and PHELIX (GSI). In the range of strain rates of 1 to 10 μs−1 at the first time, data of dynamic tensile strength of the material were obtained. At maximal realized strain rate of 14 μs−1, the spall strength value 2.1 GPa has been achieved that is 64% of the theoretical ultimate tensile strength of the graphite. Spallation was observed not only on the backside of the target, but also on its front (irradiated) surface. The morphology of the front and rear surfaces of the targets was studied using the optical and scanning electron microscopy. The structure of the graphite in irradiated area on the facial side as well as in the spallation zone on the rear side of the target was investigated by Raman scattering method. A comparison of the dynamic strength of the graphite with the dynamic strength of a synthetic diamond is done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.