Abstract
We have resolved the solid–liquid phase transition of carbon at pressures around 150 GPa. High-pressure samples of different temperatures were created by laser-driven shock compression of graphite and varying the initial density from 1.30 g/cm3 to 2.25 g/cm3. In this way, temperatures from 5700 K to 14,500 K could be achieved for relatively constant pressure according to hydrodynamic simulations. From measuring the elastic X-ray scattering intensity of vanadium K-alpha radiation at 4.95 keV at a scattering angle of 126°, which is very sensitive to the solid–liquid transition, we can determine whether the sample had transitioned to the fluid phase. We find that samples of initial density 1.3 g/cm3 and 1.85 g/cm3 are liquid in the compressed states, whereas samples close to the ideal graphite crystal density of 2.25 g/cm3 remain solid, probably in a diamond-like state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.