Abstract
In this paper, we proposed a simulation approach for studying the random dopant fluctuation (RDF) effects in the nanoscale MOSFETs using only the TCAD tools. We use this approach to simulate the RDF effects in the 20-nm gate-length bulk MOSFETs, silicon-on-insulator (SOI) single-gate (SG) and triple-gate (TG) FinFETs for demonstration. This approach utilizes the stochastic nature of the Monte Carlo (MC) simulation of ion implantation to capture the RDF phenomena in the devices. The simulation results show that the standard deviation of the threshold voltage (σV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ) is approximately proportional to the cube root of the channel doping concentration for the conventional bulk MOSFETs. For the SOI SG and TG FinFETs, the σV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> increases much less than that of the conventional bulk MOSFETs as the channel doping concentration increases. Besides, the σV <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> of the SOI TG FinFETs show about 30% to 40% reductions comparing to those of the SOI SG FinFETs. The average of the MC simulation results agrees with the implant table simulation results. The reasonable simulation results verify the validity of this TCAD simulation scheme for the RDF study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.