Abstract

The great interest in nanostructured magnetic composites is due to their great prospects for use as a basis for the development of catalysts for the adsorption of manganese in wastewater. Interest in magnetic nanocomposites in this direction is primarily due to the possibility of extracting them from water media using ordinary magnets, which allows them to be used again. Additionally, it is worthwhile to note interest in research related to increasing the efficiency of adsorption, as well as an increase in the number of repeated cycles of operation. In this regard, the main goal of this study is to study the prospects for applying the method of mechanochemical synthesis for the creation of iron-containing nanocomposites doped by rare-earth elements Gd, Ce, Y, and Nd in order to obtain optimal catalysts for cleaning water media. During the studies, structural properties and phase composition of synthesized nanocomposites were established, as well as ultra-thin parameters of the magnetic field. It has been established that the kinetic curves of the adsorption process can be described by a pseudo-first-order model, and the process of manganese adsorption itself is associated with the cationic interaction of manganese ions with the surface of nanocomposites. The kinetic curves of degradation were determined, as well as the influence of the number of cyclic tests on the adsorption of manganese for synthesized nanocomposites, depending on the type of dopant and phase composition, respectively. Iron-containing nanocomposites doped with gadolinium and neodymium have been found to have the highest adsorption efficiency and corrosion resistance. Particular attention is paid to the study of the stability of storage of nanocomposites for a long time, as well as the preservation of their adsorbent properties in the purification of aqueous media. It has been determined that the modification of nanostructures with the help of rare earth compounds leads to an increase in resistance to degradation, as well as to the preservation of the efficiency of adsorption for 5–7 cycles in comparison with Fe2O3 nanoparticles, for which low resistance to degradation was observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call