Abstract

AbstractWith the production of bacterial urease, bacteria can provide the best conditions for colonization and survival of the stomach in acidic environment. Due to this reproductive ability, H. pylori can cause various diseases such as cancer, urinary tract infections, and peptic ulcer in human metabolism. Consequently, the discovery of substances that can inhibit urease activity holds great promise for treating certain diseases. In this study, Schiff base derivatives of 1,2,4‐triazole‐3‐thione were synthesized in good to excellent yields. The structures of the obtained compounds were elucidated using spectroscopic techniques, such as FT‐IR, 1H‐NMR and 13C‐NMR. The urease inhibitory activities of the obtained products were evaluated against the reference inhibitor thiourea. Out of these compounds, compound 6 c exhibited the highest inhibitory effectiveness, with an IC50 value of 0.0109 μM against refenrence inhibitor (IC50=11 μM). Kinetic studies revealed that compound 6 c acts as a non‐competitive inhibitor. According to the results of the docking studies, compound 6 c exhibited the highest binding affinity (with the lowest ΔG value as −8.4 kcal/mol) and efficiently interacted with the enzyme as a potent inhibitor among all the molecules examined in the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.