Abstract

Owing to the serious environmental problems and the price of the traditional energy resources the use of industrial waste heat or the renewable energy, especially the solar energy, as the driving force for vapour absorption cooling systems is continuously increasing. A particular attention was given to single effect cycle. The main objective of higher effect cycle is to increase system performance when high temperature heat source is available. The purpose of the present study was to investigate the potential for the application of single effect double effect and triple effect absorption cooling cycles for production chilled water. For the three systems identical cold output of 300 kW is used. Simulation results were used to study the influence of the various operating parameters on the performance coefficient, exergetic efficiency and the ratio of mass flow rate of refrigerant generated to the heat supplied of the three systems. It is concluded that the COP of double effect system is approximately twice the COP of single effect system and that the COP of triple effect system is slightly less than thrice the COP of single effect system. The exergetic efficiency of double effect system and triple effect system increase slightly compared to the exergetic efficiency of single effect system. It is found that for each condenser and evaporator temperature, there is an optimum generator temperature. At this point the COP and exergetic efficiency of the systems become maximum. Triple effect system generates more vapour refrigerant per unit heat supplied as compared with single effect and double effect systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call