Abstract
The potential for beneficial use of flue gas desulfurization-derived gypsum (FGDG), a coal combustion byproduct, as an agricultural soil amendment is currently being debated. This study investigated the hypothesis that Hg released to air from FGDG will be reduced when amended to planted and bare soils. The potential for enhanced methylmercury (MeHg) production and Hg uptake by plants in soils amended with FGDG was also investigated. Flue gas desulfurization-derived gypsum from three sources was homogenized into three soils at 4.5, 45, and 170 t ha and applied at 4.9 t ha as a thin layer to simulate tilled and no-till applications, respectively. Twenty-four-hour Hg flux was measured from unamended and FGDG-amended soils on a seasonal time step over 1 yr and after disturbing, watering, and planting. Methylmercury in soil, irrigation drainage, and total Hg in plant tissues were quantified. Results should be interpreted within the confines of the experimental setting and materials used for this study. Total Hg concentrations in soils, homogenized with FGDG, were below that considered representative of soil with background values (<100 ng g). Emissions from amended soils were higher initially relative to unamended soils but became similar over time. Significantly less Hg (2%) was lost to the air from FGDG-amended soils (90 g FGDG added for lowest application) than that released from the FGDG alone (30-70%) (50 g FGDG) over 1 yr. Total Hg and MeHg in irrigation drainage and total Hg concentrations measured in plants were similar for amended and unamended soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.