Abstract

Sewage sludge usually contains significant amount of Zinc (Zn) and is widely used in agricultural lands. A laboratory experiment was performed to determine Zn desorption characteristics in unamended and amended soils with sewage sludge. Ten calcareous soils were amended with 1 % (w/w) sewage sludge. Amended and unamended soils were incubated at field capacity at 25 ± 1 °C for 1 month. After incubation, the kinetics of Zn desorption in amended and unamended soils were determined by successive extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) in a period of 1–504 h at 25 ± 1 °C. The results of kinetics study showed that extracted Zn and desorption rate constants in the amended soils were significantly (p < 0.01) higher than in the unamended soils. The results showed that Zn desorption increased from 201 to 343 % in amended soil with respect to unamended soils. The amounts of desorbed Zn in the unamended soils ranged from 3.73 to 8.79 mg kg−1, while the amounts of desorbed Zn in amended soils ranged from 11.47 to 17.66 mg kg−1. Desorption kinetics of Zn in two soils conformed fairly well to first-order, parabolic diffusion and power function equations. The results of stepwise regression analysis indicated that calcium carbonate equivalent and clay could be used to estimate Zn desorption characteristics in DTPA-TEA solution in the amended and unamended calcareous soils. It can be concluded that sewage sludge applied to calcareous soils may enhance the source of Zn for the plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.