Abstract

For establishing a new methodology for evaluating an effect of the grain boundaries, both the piezoelectric photo-thermal (PPT) and the surface photo-voltage (SPV) measurements of polycrystalline Si p–n junction samples with different volume fractions of grain boundaries were carried out. We could define the signal intensity ratio of SPV/PPT as the key indicator of photovoltaic performance. This is because the PPT signal implies the phonon emitting carrier loss, whereas the SPV denotes the photo-excited carrier accumulation at the surface and the junction interface. It was found that the SPV/PPT ratio and solar cell efficiency decreased with increasing volume fraction of the grain boundaries. Present experimental results demonstrated that one can directly estimate the photovoltaic performance of in-process polycrystalline Si p–n junction wafer by adopting the combination of the PPT and the SPV methodologies without electrodes. Since the PPT detects the non-radiative recombination process, present methodology and the laser-beam-induced current and the photoluminescence imaging methods are complementary. By complementary use of these methods, it becomes possible to investigate the characteristic of grain boundary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call