Abstract

The alternating-direction-implicit finite-difference time-domain method is used to analyze the Metal-Insulator- Semiconductor-Metal interconnects by solving Maxwell's equations in the time domain. The dielectric quasi-TEM mode, the slow wave mode, and the skin-effect mode are all analyzed. This analysis shows that the silicon substrate losses and the metal line losses can be modeled with high resolution. The analysis provides attenuation and phase constant values versus semiconductor doping and frequency. We find that semiconductors readily operate in the slow wave mode and skin effect mode for selected doping densities. Accurate prediction of interconnect losses is critical to high-frequency design with highly constrained timing requirements. © 2011 Wiley Periodicals, Inc. Microwave Opt Technol Lett, 2011; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26085

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.