Abstract

The near-field tip-vortex flow structure behind an oscillating NACA 0015 wing was investigated at . For attached-flow and light-stall oscillations, a small hysteretic property existed between the pitch-up and pitch-down motion, and many of the vortex flow features were found to be qualitatively similar to those of a static wing. For deep-stall oscillations, the wing oscillations imposed a strong discrepancy in contour shapes and magnitudes between the pitch-up and pitch-down phases of the oscillation cycle. The vortex was less organized during pitch-down (as a result of leading-edge-vortex-induced massive flow separation) than during pitch-up. The tangential velocity, circulation and lift-induced drag increased progressively with the airfoil incidence, and had higher magnitudes during pitch-up than during pitch-down, while varying slightly with the downstream distance. The vortex size, however, was larger during pitch-down than during pitch-up. The axial flow was always wake-like during the deep-stall oscillation cycle. The normalized circulation within the inner region of the tip vortex also exhibited a self-similar structure, similar to that of a static wing, and was insensitive to the reduced frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call