Abstract

A nanoparticle has been reported as a promising lubricant to increase the durability of microelectromechanical systems (MEMS) switches, but there remains much room for development and scientific observations. In this paper, we present the fabrication and research platform for a nanoparticle lubricated MEMS switch; we measured its characteristics and investigated the mechanisms behind it. In the measurements, gold nanoparticle lubrication demonstrated an increased average adhesion force from 16.38 to 23.68 μN by 44.51% and a decreased average electrical contact resistance from 211.20 to 49.85 mQ by 76.40%. In a hot switching mode lifetime test, the gold nanoparticle lubricated MEMS switch exhibited extension of reliability from 5.13 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sup> to 4.75 × 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sup> cycles, which corresponds to 9.26-fold increase. We attribute this remarkable enhancement to a mechanical stress release via lateral deformation of the nanoparticle and refreshment of the contact spots owing to movement of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.