Abstract

Centrifugal pumps operate below their nominal capacity when handling gas–liquid flows. This problem is sensitive to many variables, such as the impeller speed and the liquid flow rate. Several works evaluate the effect of operating conditions in the pump performance, but few bring information about the associated gas–liquid flow dynamics. Studying the gas phase behavior, however, can help understanding why the pump performance is degraded depending on the operating condition. In this context, this paper presents a numerical and experimental study of the motion of bubbles in a centrifugal pump impeller. The casing and the impeller of a commercial pump were replaced by transparent components to allow evaluating the bubbles' trajectories through high-speed photography. The bubble motion was also evaluated with a numerical particle-tracking method. A good agreement between both approaches was found. The numerical model is explored to evaluate how the bubble trajectories are affected by variables such as the bubble diameter and the liquid flow rate. Results show that the displacement of bubbles in the impeller is hindered by an increase of their diameter and impeller speed but facilitated by an increase of the liquid flow rate. A force analysis to support understanding the pattern of the bubble trajectories was provided. This analysis should enlighten the readers about the dynamics leading to bubble coalescence inside an impeller channel, which is the main reason behind the performance degradation that pumps experience when operating with gas–liquid flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call