Abstract

A mutant calmodulin, in which phenylalanine 99 of calcium binding site III was changed to a tryptophan by using cassette-based, site-directed mutagenesis, has been used to analyze the mechanism of calcium binding. The combined study of direct calcium binding, modification of tryptophan fluorescence properties upon calcium binding, and terbium titration allows some discrimination among proposed mechanisms of cation binding to calmodulin. Calmodulin appears to have six cation binding sites, four of which are selective for calcium, that seem to be coupled. Under a given set of conditions, these calcium-selective sites are not identical. In addition to providing insight into the mechanisms of calcium modulation of calmodulin, these studies demonstrate the feasibility of using isofunctional, tryptophan-containing mutants of proteins to gain insight into protein-ligand interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.