Abstract

The method of digital system simulation can be effectively used to quantify the complex multiphase interactions within a gas injection process. Process simulation results yield a better understanding and a better aimed engineering of gas dispersion techniques in metallurgical processes. In this paper the breakup phenomenon of gas bubbles in stagnant liquids is simulated and the dependencies between breakup of bubbles and various parameters of a gas dispersion process such as operative parameters, system parameters and mass transfer rates are investigated.The bubble diameter after breakup is almost independent of the nozzle diameter and gas flow rate. The frequency of bubble breakup and critical bubble size depend on the rate of mass transfer into the bubble. An almost constant rising velocity is achieved only in those cases investigated where mass transfer and bubble breakup are considered. In all other cases no stationary rising velocity is obtained. The interplay between bubble size, rising velocity and the inertia of the surrounding liquid and the influence of mass transfer and breakup are investigated.Simulation results reveal that the behaviour of an ascending bubble is strongly influenced by the mass transfer rate, i. e. by the composition of the melt. Verification of the simulation results with empirical equations from literature shows a very good agreement in all dispersion systems investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call