Abstract

The presence of sialic acid as a component of cell surface lipooligosaccharides or capsular polysaccharides has been shown to be correlated with the virulence of a number of Gram-negative mucosal pathogens, including several Haemophilus and Neisseria spp. As part of our efforts to evaluate the role of sialic acid in the pathobiology of these organisms, we have initiated studies of the enzymes from Haemophilus ducreyi (the infectious agent of chancroid) responsible for the activation and attachment of sialic acid to the lipooligosaccharide. In this report, we describe results of an investigation of the steady-state kinetic mechanism of the activating enzyme, cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase. Using a combination of initial velocity, product inhibition, and dead-end inhibition studies, the reaction is shown to be freely reversible and to proceed through an ordered bi-bi kinetic mechanism in which CTP binds first and CMP-NeuAc dissociates last. In addition, a detailed analysis of the kinetic expressions for the observable constants is presented showing how the variation in apparent product inhibition constants (Kii) can be used to predict the rate-limiting step in kcat, which appears to be dissociation of CMP-NeuAc in this enzyme. To our knowledge, this relationship has not been previously recognized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.