Abstract

Kinetic analysis of substrate specificity revealed that a recombinant Arabidopsis protein catalyzes the conversion of glyoxylate to glycolate (Km,glyoxylate= 4.5 μmol·L–1) and succinic semialdehyde (SSA) to γ-hydroxybutyrate (Km, SSA= 0.87 mmol·L–1) via an essentially irreversible, NADPH-based mechanism. In this report, the enzyme was further characterized via initial-velocity, dead-end inhibition and product inhibition studies. The kinetic mechanism was ordered Bi Bi, involving the complexation of NADPH to the enzyme before glyoxylate or SSA, and the release of NADP+before glycolate or γ-hydroxybutyrate, respectively. It can be concluded that the enzyme functions as a NADPH-dependent glyoxylate reductase (EC 1.1.1.79) or possibly an aldehyde reductase (EC 1.1.1.2), and the kinetic mechanism involved is consistent with that found in members of both the aldo-keto reductase and 3-hydroxyisobutyrate dehydrogenase-related superfamilies of enzymes. Since NADP+was an effective competitive inhibitor with respect to NADPH (Ki= 1–3 µmol·L–1), it is proposed that the ratio of NADPH/NADP+regulates enzymatic activity in planta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call