Abstract
BackgroundSalmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear.ResultsHere, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of β1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in β1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-β1 integrin antibody, supporting the hypothesis that β1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization.ConclusionsOur results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.
Highlights
Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck
We investigated the link between heparan sulfate proteoglycan (HSPG) and the PagN-mediated internalization mechanism and characterized the signaling pathway induced during the PagN invasion mechanism of S
The percentage of strains harbouring the pagN gene ranged from 99.069% for subspecies S. enterica subsp. salamae to 100% for S. bongori and S. enterica subspecies houtenae and indica (Fig. 1a)
Summary
Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. Salmonella is a Gram-negative bacterium, belonging to the Enterobacteriaceae family. This genus is divided into two species: S. bongori and S. enterica. After Salmonella ingestion, the bacteria are found in the intestine, where they are able to adhere to the intestinal epithelium and to induce their own entry into host cells. This allows Salmonella colonization of the intestinal tract, which constitutes a crucial step in establishing infection [2]. To invade non-phagocytic cells, Salmonella expresses several invasion factors: a type III secretion system (T3SS) known as T3SS-1, and two invasins Rck and PagN [4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have