Abstract

Understanding the wear of the biomaterial-cartilage interface is vital for the development of innovative chondroplasty. The aim of this study was to investigate a number of biphasic materials as potential chondroplasty biomaterials. Simple geometry friction and wear studies were conducted using bovine articular cartilage pins loaded against a range of single-phase and biphasic materials. The frictions of each biomaterial was compared within simple and protein-containing lubricants. Longer-term continuous sliding tests within a protein containing lubricant were also conducted at various loading conditions to evaluate the friction and degradation for each surface. All single-phase materials showed a steady rise in friction, which was dependent on the loss of interstitial fluid load support from the opposing cartilage pin. All biphasic materials demonstrated a marked reduction in friction when compared with the single-phase materials. It is postulated that the biphasic nature of each material allowed an element of fluid load support to be maintained by fluid rehydration and expulsion. In the longer-term study, significant differences in the articular cartilage pin (surface damage) between the positive control (stainless steel) and the negative control (articular cartilage) was found. The potential biphasic chondroplasty materials produced a reduction in articular cartilage pin damage when compared with the single-phase materials. The changes in surface topography of the cartilage pin were associated with increased levels of friction achieved during the continuous wear test. The study illustrated the importance of the biphasic properties of potential chondroplasty materials, and future work will focus on the optimization of biphasic properties as well as long-term durability, such that materials will more closely mimic the biotribology of natural articular cartilage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.