Abstract

Nanosecond-pulsed surface dielectric barrier discharge (NS-DBD) plasma actuations with powered electrodes of different surface geometries were investigated numerically by solving the coupled plasma discharge equations, electron energy equations and the Navier–Stokes equations in quiescent air at atmospheric pressure. The plasma discharge characteristics and the air flow features were simulated numerically using a simple chemical kinetics plasma model for three powered electrodes with serrated, rectangular and semicircular surfaces, respectively. The results show that the reduced electric field of the serrated electrode is globally the strongest, while that of the rectangular electrode the second strongest, and that of the semicircular electrode the weakest. The maximum values of the reduced electric field, the mean electron energy and the electron density are found to occur immediately near the right upper tips of the powered electrodes, and the streamers of the mean electron energy and electron density in the serrated electrode case are larger in size and higher in value than in the rectangular and semicircular electrode cases. On the other hand, the pressure wave in the serrated electrode case is more intensive, and propagates slightly faster than in the other two electrode cases. Besides, the heated region in the serrated electrode case is greater with a higher temperature than in the other two electrode cases. The comparison results indicate that the performance of NS-DBD plasma actuators depends significantly on the powered electrode surface geometry, and the serrated surface design is a very promising means of flow control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call