Abstract
The corrosion properties of iron-based composite materials containing graphite and silicon carbide (SiC) reinforcement were investigated. The effects of silicon carbide reinforcement were investigated by adding 0.5% graphite and 1%, 2%, and 4% SiC. A powder metallurgy method was used to produce the composite samples. Iron, graphite, and silicon carbide powders were blended for one hour with a three-axis mixer and then unidirectionally pressed under a pressure of 750 MPa. After pressing, the composite materials were sintered at 1100°C for one hour. The corrosion properties and microstructure, density, and hardness properties of the composite materials that can affect the corrosion properties were also investigated. It was determined that the pore ratio and hardness of the composite material increased, and corrosion resistance decreased, with increasing silicon carbide content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Southern African Institute of Mining and Metallurgy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.