Abstract

The corrosion properties of iron-based composite materials containing graphite and silicon carbide (SiC) reinforcement were investigated. The effects of silicon carbide reinforcement were investigated by adding 0.5% graphite and 1%, 2%, and 4% SiC. A powder metallurgy method was used to produce the composite samples. Iron, graphite, and silicon carbide powders were blended for one hour with a three-axis mixer and then unidirectionally pressed under a pressure of 750 MPa. After pressing, the composite materials were sintered at 1100°C for one hour. The corrosion properties and microstructure, density, and hardness properties of the composite materials that can affect the corrosion properties were also investigated. It was determined that the pore ratio and hardness of the composite material increased, and corrosion resistance decreased, with increasing silicon carbide content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call