Abstract

Silicon carbide (SiC) powder is used in nonlinear field grading materials. The composite material, consisting of an insulating polymer matrix filled with the SiC-grains, is usually a percolated system with established conducting paths. In order to explain the properties, the electrical characteristic and conduction mechanisms of the SiC powder itself are of interest. SiC powders have been studied by current–voltage measurements and the influences of grain size and doping have been investigated. The macroscopic current characteristics of green and black SiC powders can be described by the transport mechanisms at the grain contacts, which can be modeled by Schottky-like barriers. The SiC is heavily doped and tunneling by field emission is the dominating conduction mechanism over the major part of the nonlinear voltage range. It is suggested that preavalanche multiplication influences the current at the highest voltages, especially for p-type black SiC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.