Abstract

AbstractThis study was performed to expand the usage area of phenylene sulfide (PSS) by reducing its cost without deteriorating the material properties. For this purpose, mechanical, thermo‐mechanical and abrasion tests were conducted to composite materials obtained by adding carbon fiber (CF), basalt fiber (BF), zeolite, and bentonite into PPS, and the effects of additive type and ratio were examined. For the test samples, fabricated by the melt blending, the fiber content was 10 wt.%, while zeolite, and bentonite ratios were 1, 5, and 10 wt.%. According to tensile and abrasion test results, zeolite, and bentonite improved the properties of fiber‐reinforced PPS by showing a synergistic effect. It has been demonstrated in this research that the cost of fiber‐reinforced PPS matrix composites, which are widely used in advanced engineering applications, can be reduced by using natural minerals zeolite and bentonite without sacrificing material properties. Findings obtained from mechanical and wear tests, revealed that the composition containing 10, 10, and 80 wt.%, zeolite, CF, and PPS, respectively, exhibited optimum material properties. BF for PPS has been shown to be an alternative reinforcement to CF, as it exhibits the lowest wear rate and better interacts with particles in the matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.