Abstract

ObjectiveIn this study, it was aimed to provide a therapeutic approach for T1DM by encapsulating the pancreatic islets with mesenchymal stem cells and decellularized pancreatic extracellular matrix to support the survival of islets while maintaining their cellular activity. MethodPancreatic extracellular matrix was decellularized using different concentrations of detergent series. After the preparation of the protein-based tissue extracellular matrix was shown to be free of cells or any genetic material by molecular, immunofluorescence and histochemical techniques. Following the homogenization of the decellularized pancreatic extracellular matrix and the analysis of its protein composition by LC-MS, the matrix proteins were incorporated with pancreatic islets and rat adipose tissue-derived MSCs (rAT-MSCs) in alginate microcapsules. Glucose-stimulated insulin secretion property of the islet cells in the microbeads was evaluated by insulin ELISA. The gene expression profile of the encapsulated cells was analyzed by Real-Time PCR. ResultsUnlike the protein composition of whole pancreatic tissue, the decellularized pancreas matrix was free of histone proteins or proteins originated from mitochondria. The protein matrix derived from pancreatic tissue was shown to support the growth and maintenance of the islet cells. When compared to the non-encapsulated pancreatic islet, the encapsulated cells demonstrate to be more efficient in terms of insulin expression. ConclusionThe extracellular pancreatic matrix obtained in this study was directly used as supplementary in the alginate-based microcapsule enhancing the cell survival. The tissue matrix protein and alginate had a synergistic effect on total insulin secretion, which might have the potential to overcome the insulin deficiency. Despite the improvement in the cell viability and the number, the efficiency of the insulin secretion in response to glucose stimulation from the alginate microcapsules did not meet the expectation when compared with the non-encapsulated pancreatic islets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call