Abstract

The chemical states of Fe and Pt in in situ annealed L10 structured FePt nanodots formed by self-assembled nanodot deposition method have been systematically investigated by angle resolved x-ray photoelectron spectroscopy. From the Fe3p and the Pt4f core level x-ray photoelectron (XP) spectra, it is evident that both the Fe and Pt of the nanodots were oxidized in the as-grown state. After the in situ annealing under high vacuum, a peak corresponding to metallic Fe begins to appear, and subsequently the metallic peak fraction increased with the increase in the annealing temperature. In line with this, the peak fraction of the respective oxides is drastically decreased. Irrespective of the annealing temperatures, it is inferred from the intensity of the XP spectrum that the Fe atom of the FePt nanodots is highly prone to oxidation than the Pt atom. Nevertheless, the valence band spectra of the as-grown FePt nanodot film clearly depict the presence of metallic Fe–Pt alloy. We would like to explain the results of the core level and valence band XP spectra as follows: only the peripheral Fe and Pt atoms of the as-formed FePt nanodots are bonded to the oxygen of the cosputtered SiO2 matrix, whereas the metallic core of the as-formed FePt nanodots is always preserved. The very good vacuum ambient during postannealing highly promotes the dissociation of oxygen from the metal oxides via reduction reaction. This results into an increase in the fraction of metallic Fe and Pt at the periphery of FePt nanodots and the formation of high quality SiO2 matrix after annealing. Similar results were also observed for the monatomic W as well as Pt nanodots embedded in SiO2 matrix. Hence, this simple, rather effective method of in situ annealing of metal dots dispersed in an insulating matrix can be readily employed in the fabrication of high-density nanodot memory devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call