Abstract
The swivel system of a hydraulic excavator is susceptible to pressure impact during start and stop, which significantly impacts the service life of the excavator. In this investigation into how varying speeds affect the dynamic characteristics of a swing motor’s buffer relief valve (BRV), the AMESim simulation model of the whole swing motor was established, and its validity was confirmed through experimental testing. The pressure overshoot rate and start–stop impact time of the BRV of a swing motor at 1000 rpm, 1500 rpm, and 2000 rpm, under different spring stiffnesses, were analyzed. Based on the mathematical model of the BRV, the influence of the main structural parameters of the BRV on its dynamic characteristics were analyzed using an AMESim simulation model of the whole swing motor. The results show that an increase in the rotational speed of the electric motor, while maintaining a constant spring stiffness, affects the pressure overshoot rates of both the buffer relief valve of the swing motor inlet (BRVSMI) and the buffer relief valve of the swing motor outlet (BRVSMO); specifically, when the set pressure is established at 20 MPa, the pressure overshoot rate is observed to be higher, and the start–stop impact time exceeds 25 MPa. During the start phase of the swing motor, the start impact time for the BRVSMI remains relatively constant at approximately 2.5 s, with the pressure overshoot rate stabilizing at around 0.8. Conversely, in the stop phase of swing motor, both the stop impact time and the pressure overshoot rate of the BRVSMO exhibit variability in their response to the structural parameters of the BRV. Under conditions of comparatively high pressure, it is recommended to increase the diameter of the spool damping hole, the mass of the valve core, and the viscous damping coefficient, while simultaneously reducing the guide rod diameter of the buffer plunger, as these modifications can effectively enhance the start–stop impact time and mitigate the pressure overshoot rate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have