Abstract
Degradation tests are a key step in the development of a bioresorbable stent. The present study focused on the degradation of bioresorbable stents made from PLLA filaments, and examined the variation of the physical, thermal, and mechanical properties of the material and the devices under both real-time and accelerated degradation conditions. Results showed that the undegraded filaments were highly crystalline and composed by both α and α′ crystalline phases, induced by both the melt spinning and heat treatment processes. The latter was shown to have an important influence on the further formation of α crystalline phase and therefore crystalline structure perfectioning. Real-time degradation tests showed that the devices maintained structural stability for up to a year, meeting the required 6-month degradation period for vascular stents. Degradation was shown to primarily affect the crystalline regions, and to cause a gradual loss of material ductility before any mass loss or decrease in crystallinity. In turn, a constant decrease of molecular weight was observed, with stent failure occurring around day 389 due to a drop in molecular weight below 10,000 g/mol. Accelerated degradation tests mirrored real-time results until mass loss began. Subsequently a slower molecular weight decrease was observed, with an increase and subsequent decrease of material crystallinity. The consistency of the data obtained between real-time and accelerated degradation before mass loss confirmed the possibility to gain insights into real-time degradation through an accelerated protocol. However, attention must be paid to the initial molecular weight of the material, which has been shown to highly influence the acceleration rate. This study provides a wide range of experimental data both on the real-time and thermally accelerated degradation behaviour of PLLA braided stents that can be used as benchmark for further studies in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.