Abstract

Particle image velocimetry experiments and simulations were conducted in this study to clarify the influence of the DBD plasma actuator on the flow over a flat plate. The result shows that the actuator not only effectively leads to a local rise in near-wall velocity, but also efficiently causes a decrease in the displacement thickness of the boundary layer. Actuator-induced vorticity is generated to intensify the energy exchange between the main flow and the boundary layer, and dynamic energy is thus added directly to the low-energy fluid by the actuator. Although the increase in fluid velocity also brings a rise in dynamic energy loss, the energy added by the actuator can cover this to provide growth in the energy of the boundary layer. The plasma actuator presents a better performance when the free-stream velocity is lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.