Abstract

The precipitation behavior of Cu-bearing ultra-low carbon steel after step quenching and tempering at 923 K for 0.5-2.5 h was investigated. The size, quantity, and characteristic distribution of nano-precipitates were analyzed using transmission electron microscopy, and the microstructure of B2 (an ordered structure belonging to the body-centered cubic structure), 9R (a special triclinic lattice that has characteristics of rhombohedral structure), 3R (a special triclinic lattice like 9R), and FCT (face-centered tetragonal lattices) were accurately determined. The relationship between nano-precipitates and mechanical properties under different heat treatment processes was obtained, revealing that nano-precipitates effectively enhanced the yield strength of Cu-bearing ultra-low carbon steel. There were two forms of crystal structure evolution sequence of precipitation: B2→multi twin 9R→detwined 9R→FCT→FCC and B2→multi-twin 9R→detwinned 9R→3R→FCT→FCC. The morphology of the precipitated particles during the growth process changed from spherical to ellipsoidal and finally to rod-shaped. It was proven that a stable 3R structure existed due to the coexistence of 9R, 3R, and FCT structures in the same precipitate particle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.