Abstract

The Ginzburg–Landau theory and dipole defect model have been employed to investigate the flexoelectric and ferroelastic effects on the ferroelectric and energy storage properties of relaxor ferroelectrics (RFs). The results obtained show that due to the existence of polar nanoregions (PNRs) in RFs, the elastic field of the material, which is induced by both the flexoelectric and ferroelastic effects, leads to the increase of the domain switching energy and coercive field and the decrease of the energy storage efficiency. In contrast, the short-range electric field induced by the dipole defects enhances the energy storage efficiency of the material by enhancing the material’s relaxor behavior. Hence, the energy storage efficiency of RFs can be effectively functionalized by modulating the composition ratio and the electric field of the RF materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call