Abstract

Simulations of the polarization switching process near the tip of an edge crack in relaxor ferroelectrics subjected to external electric field have been carried out by employing the time-dependent Ginzburg–Landau theory and the phase-field method. The electric boundary conditions of the crack and the material are assumed to be impermeable and isotropic, respectively. The interaction between dipole defects and the crack and the influence of the dipole defect concentration on the switching process are discussed. The results obtained show that, in relaxor materials, polarization switching in the vicinity of the crack tip is suppressed, and the electric field distribution is not symmetric with respect to the crack surface. These results arise on account of the interaction between dipole defects and the crack and the inhomogeneous electric field induced by dipole defects. Moreover, the polarization switching rate and switching zone area decrease with an increase of dipole defect concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.