Abstract

Port fuel injection is an important technical route in methanol engines. To obtain a theoretical basis for injector arrangement and injection strategy development in methanol engines, an optimal experimental platform based on diffuse back-illumination and the refractive index matching method (RIM) was designed and built in this study. The experiments on the behavior of low-pressure methanol spray-wall impingement and wall film were carried out and the influence of the three boundary conditions of spray distance (Dimp), wall temperature (Twall), and injection pressure (Pinj) were analyzed comprehensively. Results showed that with the increase of Dimp, the overall shape of spray before impinging the wall changed from conical to cylindrical. The impinging spray height Hi and impinging spray width Wi increased with the decrease of Dimp and the increase of Pinj. Adhesive fuel film mass Mf increased with the increase of Dimp due to the decrease of kinetic energy during wall impact. In addition, the increase of the wall temperature Twall reduced Mf due to evaporation, but when Twall reached 423 K, Mf rebounded due to the Leidenfrost effect. The results of this study are helpful to improve the accuracy of the numerical methanol engine model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.